Картографирование лесов по многоспектральным спутниковым данным высокого пространственного разрешения

Статьи по географии » Разработка методики региональной экологической оценки состояния лесов по данным спутниковых наблюдений » Картографирование лесов по многоспектральным спутниковым данным высокого пространственного разрешения

Страница 3

Таблица 2

Оценка влияния взаимной нормализации изображений на величину стандартного отклонения спектральной яркости классов лесного покрова

Класс лесных насаждений

Темнохвойные

Светлохвойные

Лиственные

TM3

TM4

TM5

TM3

TM4

TM5

TM3

TM4

TM5

До нормализации

3.8

7.1

5.5

4.7

12.0

9.1

8.3

10.3

7.4

После нормализации

2.3

4.7

5.1

3.9

7.4

7.7

4.8

6.5

6.7

Табликца 3

Влияние взаимной нормализации изображений на значения трансформированной дивергенции между классами лесного покрова (до нормализации / после нормализации)

Тип леса

Темнохвойные

Светлохвойные

Лиственные

Темнохвойные

0.00

1265.68 / 1686.26

1334.06 / 1897.91

Светлохвойные

1265.68 / 1686.26

0.00

686.23 / 967.74

Лиственные

1334.06 / 1897.91

686.23 / 967.74

0.00

Рис.3 Влияние яркостной нормализации изображений Landsat-ETM на гистограмму яркости леса в спектральных каналах TM3 (слева) и TM4 (справа). Гистограммы яркостей до и после нормализации показаны соответственно сплошной и пунктирной линиями.

Для классификации совокупности радиометрически нормализованных изображений Landsat-ETM+ были использованы спектральные каналы TM3, TM4, TM5 и ТМ7, как наиболее информативные для изучения растительности. Предварительная оценка возможностей классификации лесов по данным Landsat-ETM+ продемонстрировала достаточно высокую точность распознавания классов темнохвойных, светлохвойных, лиственных и смешанных насаждений. Использование алгоритма неконтролируемой классификации ERDAS ISODATA позволило выделить на первом этапе 200 спектральных кластеров, последующая визуальная интерпретация которых была проведена с привлечением карты растительности Московской области и анализа сигнатур кластеров в пространстве яркостей в каналах TM3 и TM4.

Необходимость повышения точности распознавания темнохвойных лесов, частично перепутываемых с тенями от облаков и участками водной поверхности в прибрежных зонах, потребовала дополнительной тематической обработки спутниковых изображений. Повторная классификация изображений была выполнена только для пикселей отнесенных на предыдущем этапе к указанной совокупности классов с использованием текстурного признака, характеризуемого значениями дисперсии яростей в скользящем окне размером 5х5 пикселей. При этом для участков водной поверхности, как пространственно более однородных, характерны относительно низкие значения признака, что позволило улучшить точность классификации темнохвойных лесов. Дальнейшее улучшение точности выделения темнохвойных лесов было направлено на исключение ошибочно классифицированных участков теней от облаков. Это обеспечивалось процедурой пространственного анализа изображений в окрестности предварительно выявленных участков облачного покрова, детектированных по высоким значениям спектральной яркости во всех используемых спектральных каналах.

Страницы: 1 2 3 4


Материалы по географии:

Улучшение условий жизни: жилья, коммунального и бытового обслуживания, обеспечения топливом и энергией
Коренные народы традиционно являются кочевыми, полукочевыми и сельскими жителями (около 75 процентов этого населения проживает в сельской местности). В суровых экстремальных условиях жизни народов Севера особую роль играют социальные проблемы. В прежние годы средства массовой информации создавали р ...

КНР и Беларусь: сходства и отличия развития хозяйственных комплексов
Различия Беларуси и Китая существенны. Прежде всего, они касаются, конечно, размеров и стартовых условий. Беларусь вступила в полосу реформ, будучи индустриальным государством с преимущественно городским населением (70%) и значительным научно-техническим потенциалом, тогда как Китай начинал их в ка ...

Экономика
С середины 1970-х годов польская экономика находилась в состоянии небольшого экономического подъема. Причины роста - кредиты, выдаваемые правительством предприятиям и необеспеченная зарплата, выплачиваемая рабочим и служащим. В начале 1980-х годов разразился экономический кризис, сопровождаемый гип ...

Разделы

Copyright © 2025 - All Rights Reserved - www.briefgeography.ru